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Abstract
By means of the formal series symmetry approach proposed in [1], infinite
many symmetries and the corresponding Kac–Moody–Virasoro Lie symmetry
algebra of a new bilinear (2 + 1)-dimensional sinh-Gordon equation are given.
Then, the obtained symmetries are used to get the symmetry reductions of the
model. From one of the special reduction we know that the bilinear form of the
first member of the negative Kadomtsev–Petviashvili hierarchy is not only a
(2 + 1)-dimensional sinh-Gordon extension but also a novel (2 + 1)-dimensional
classical Boussinesq extension.

PACS numbers: 02.30.Ik, 02.30.Rz

1. Introduction

The so-called integrable systems [2] such as the Korteweg-de Vries (KdV) equation, the
Nizhnik–Novikov–Veselov (NNV) equation, the Kadomtsev–Petviashvili (KP) equation, the
nonlinear Schrödinger (NLS) equation, the sine-Gordon (sG) equation and the sinh-Gordon
(ShG) equation have been found in various application fields including the relativistic field
theory, the string dynamics, the hydrodynamics, the thermodynamics, the solid-state physics,
the nonlinear optics and so on [3–11].

It is well known that the (1 + 1)-dimensional KdV equation possesses several (2 + 1)-
dimensional integrable extensions, say, the KP equation, the NNV system, the asymmetric
NNV equation, the breaking soliton equation, etc. Furthermore, it is also known that the
(1 + 1)-dimensional sG and/or ShG equation are equivalent to the first one of the negative
KdV hierarchy via the Miura transformation. Thus, it is natural that every (2 + 1)-dimensional
integrable extension of the (1 + 1)-dimensional KdV system will lead to an integrable (2 +
1)-dimensional sG or ShG equation from its negative hierarchy. Doing more research into sG
and ShG equation systems is no doubt a quite interesting and important assignment, especially
in high dimensions, on which few researchers have done much work.
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In fact, some (2 + 1)-dimensional sG and/or ShG models have been found, for example,
the authors of [15] have proposed a (2 + 1)-dimensional sG equation (which is equivalent
to one of the negative NNV hierarchy) in a rather symmetric manner and the author of [16]
gives us another one (which corresponds to one of the negative breaking soliton hierarchy)
but without spatial symmetry of x and y. Here, what interests us much more is the (2 +
1)-dimensional ShG equation (which is related to the first one of the negative NKP hierarchy)
presented in [17]:

[αφyt + e−2φ(e2φφxt )x]y = −(sx e2φ)xx, (1)[
e2φ

(
φxt − 1

2C1 e2φ + 1
2C2 e−2φ

)]
x

+ α e2φφyt + α e2φ(e2φs)x = 0, (2)

where C1, C2 and α are arbitrary constants.
Without loss of the generality, we can choose

2φ = ω, C1 = C2 = 1
2 , α = 1, s = θ,

then the model equation becomes

(ωxt − sinh ω)x + ωx(ωxt − sinh ω) + ωyt = −2(θ eω)x, (3)

2[(θ eω)x − θ eωωx]xx +
(
ωy + ωxx + 1

2ω2
x

)
yt

= 0. (4)

For this ShG equation, the authors of [18] have presented us its bilinear form(
Dy + D2

x

)
F · G = 0, (5)

Dt

(
Dy + D2

x

)
F · G + 2DxF · G = 0, (6)

in which F ≡ F(x, y, t) and G ≡ G(x, y, t), and we default them in the later part of the
paper for convenience. F,G, ω and θ are related by

ω(x, y, t) = 2 ln
F(x, y, t)

G(x, y, t)
(7)

θ(x, y, t) = 2
∫ x

−∞
[ln G(ξ, y, t)]yt

[
G(ξ, y, t)

F (ξ, y, t)

]2

dξ (8)

and the Hirota’s bilinear operators Dx,Dy,Dt are defined as

Dm
x Dn

yD
k
t F · G = ∂m

ε1
∂n
ε2
∂k
ε3
F(x + ε1, y + ε2, t + ε3) · G(x − ε1, y − ε2, t − ε3)|ε1=0,ε2=0,ε3=0.

Considering further, if we add an arbitrary function q(y, t) to equation (8),

θ(x, y, t) = 2
∫ x

−∞
[ln G(ξ, y, t)]yt

[
G(ξ, y, t)

F (ξ, y, t)

]2

dξ + q(y, t), (9)

it is not difficult to find that the changed θ(x, y, t) (9) with the unchanged ω(x, y, t) (7) can
still bilinearize the (2 + 1)-dimensional ShG equation system (3) and (4).

In this paper, we mainly resolve the generalized symmetries of the new (2 + 1)-dimensional
bilinear form by means of the formal series approach [1], not the mastersymmetry approach
[12] nor the recursion operator method [13] for both of which are quite difficult to apply in
(2 + 1)-dimensional cases.

The general structure of the paper is organized as follows: in section 2, at first, we give
the new bilinear form of the (2 + 1)-dimensional equation system (3) and (4) under the new
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transformation relation, equation (9), and the old one, equation (7). Then, we calculate the
corresponding generalized symmetries of the bilinear (2 + 1)-dimensional ShG model and its
Kac–Moody–Virasoro Lie algebra. In section 3, we present the symmetry reduction results.
Finally, in section 4, we make a short summary and propose some questions that need to be
solved in the future.

2. Bilinear form and corresponding generalized symmetries

Here, we just give a more universal bilinear form of the (2 + 1)-dimensional ShG system (3)
and (4) without concrete proof:(

Dy + D2
x

)
F · G = 0, (10)

Dt

(
Dy + D2

x

)
F · G + qDxF · G = 0, (11)

where q ≡ q(y, t), and F,G,ω(x, y, t) and θ(x, y, t) are related by equations (7) and (9),
i.e.,

ω(x, y, t) = 2 ln
F(x, y, t)

G(x, y, t)
,

θ(x, y, t) = 2
∫ x

−∞
[ln G(ξ, y, t)]yt

[
G(ξ, y, t)

F (ξ, y, t)

]2

dξ + q(y, t).

Now, we concentrate on looking for the symmetries of the bilinear (2 + 1)-dimensional
ShG equation by formal series approach.

A symmetry

σ =
(

σF

σG

)
of the bilinear KP equation is defined as a solution of its linearized form(
Dy + D2

x

)
F · σG − (

Dy − D2
x

)
G · σF = 0, (12)

Dt

(
D2

x + Dy

)
F · σG − Dt

(
D2

x − Dy

)
G · σF + qDx(F · σG − G · σF ) = 0. (13)

According to the formal series symmetry expansion approach, σF and σG can be expanded
as

σF =
∞∑

k=0

f (n−k)σ1n[k], (14)

σG =
∞∑

k=0

f (n−k)σ2n[k], (15)

where f is an arbitrary function of the spatial variable y and f (n−k) denotes (n−k)th derivative
of f , while σ1n and σ2n are functions of x, t, F , G and arbitrary derivatives of F and G but not
y dependent explicitly. Clearly, the y part has been separated out to f (n−k).

Remark. We may change the function f in the series expansion of σG as a different arbitrary
function g(y). Nevertheless, the detailed calculations show us that there is no such arbitrary
functions in the expansions.
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Substituting the above equations (14) and (15) into symmetry definition equations (12)
and (13), we obtain

∞∑
k=1

f n−k+1

{(
Dy + D2

x

)
F · σ2n[k − 1] − (

Dy − D2
x

)
G · σ1n[k − 1]

−
∞∑

k=0

f n−k+1(Fσ2n[k] − Gσ1n[k])

}
= 0, (16)

∞∑
k=1

f n−k+1

{[
Dt

(
Dy + D2

x

)
+ qDx

]
F · σ2n[k − 1] +

[
Dt

(
Dy − D2

x

) − qDx

]
G · σ1n[k − 1]

−
∞∑

k=0

f (n−k+1)Dt (F · σ2n[k] + G · σ1n[k])

}
= 0. (17)

Because of the arbitrariness of the function f , all coefficients of the same arbitrary order
derivatives of f in equations (16) and (17) must vanish, i.e.,

−Fσ2n[0] + Gσ1n[0] = 0, (18)

−Dt(Fσ2n[0] + Gσ1n[0]) = 0, (19)(
Dy + D2

x

)
F · σ2n[k − 1] − (

Dy − D2
x

)
G · σ1n[k − 1] − Fσ2n[k] + Gσ1n[k] = 0, (20)

Dt

(
Dy + D2

x

)
F · σ2n[k − 1] + Dt

(
Dy − D2

x

)
G · σ1n[k − 1] + qDx(F · σ2n[k − 1]

−G · σ1n[k − 1]) − Dt(F · σ2n[k] + G · σ1n[k]) = 0 (k = 1, 2, . . .). (21)

Solving the above equations (18)–(21) we can find that

σ1n[0] = Fgn0(x, y), σ2n[0] = Ggn0(x, y),

σ1n[k] = − a

G
+ F

∫ (−Gta

FG2
+

at − b

2FG

)
dt,

σ2n[k] = G

∫ (−Gta

FG2
+

at − b

2FG

)
dt,

where

a = (
Dy + D2

x

)
F · σ2n[k − 1] − (

Dy − D2
x

)
G · σ1n[k − 1]

and

b = {
Dt

(
Dy + D2

x

)
+ qDx

}
F · σ2n[k − 1] +

{
Dt

(
Dy − D2

x

) − qDx

}
G · σ1n[k − 1].

To see the recursion relation clearly, we write above recursion equations in another
equivalent form(

σ1n[0]
σ2n[0]

)
=

(
Fgn0(x, y)

Ggn0(x, y)

)
, (22)

(
σ1n[k]
σ2n[k]

)
=

(
− 1

G
+ F∂−1

t

(− Gt

FG2 + ∂t

2FG

) −F∂−1
t

1
2FG

−G∂−1
t

(− Gt

FG2 + ∂t

2FG

) −G∂−1
t

1
2FG

)k

·
(

a

b

)
, (23)

(
a

b

)
=

( (
Dy + D2

x

)
F −(

Dy + D2
x

)
G

Dt

(
Dy + D2

x

)
F + qDxF Dt

(
Dy − D2

x

)
G − qDxG

)k

·
(

σ1n[0]
σ2n[0]

)
. (24)
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And then the series symmetry has the form

(
σnF

σnG

)
=

∞∑
k=0

f (n−k) ·
(

− 1
G

+ F∂−1
t

(− Gt

FG2 + ∂t

2FG

) −F∂−1
t

1
2FG

−G∂−1
t

(− Gt

FG2 + ∂t

2FG

) −G∂−1
t

1
2FG

)k

·
( (

Dy + D2
x

)
F −(

Dy + D2
x

)
G

Dt

(
Dy + D2

x

)
F + qDxF Dt

(
Dy − D2

x

)
G − qDxG

)k

·
(

σ1n[0]
σ2n[0]

)
. (25)

Now, we look for the concerned truncated symmetries. In the course of calculating, if
there exists one set of σ1n[j ] and σ2n[j ] which itself is a symmetry, i.e.,(

Dy + D2
x

)
F · σ2n[j ] − (

Dy − D2
x

)
G · σ1n[j ] = 0 (26)

and

Dt

(
D2

x + Dy

)
F · σ2n[j ] − Dt

(
Dy − D2

x

)
G · σ1n[j ] + qDx(F · σ2n[j ] − G · σ1n[j ]) = 0,

(27)

we say that the symmetry is truncated because all σ1n[k] and σ2n[k] can be taken as zero for
arbitrary k > j .

Fortunately, we find that when we take

gn(x, y) = xn

n!
, n = 0, 1, 2, 3, . . . (28)

and

q(y, t) = q(t), (29)

the series symmetries given by (25) are truncated one.
Thus now, with the help of the recursion equation (25) including equations (22), (29) and

(30), we can obtain infinitely many truncated symmetries of the bilinear (2 + 1)-dimensional
ShG equations (10) and (11). For a clear understanding, we write the first six truncated
symmetries,

σ0(f ) =
(

f F

f G

)
, (30)

σ1(f ) =
(

f xF

f xG

)
, (31)

σ2(f ) =
(

1
2fyx

2F − f F

1
2fyx

2G + f G

)
, (32)

σ3(f ) =
(

1
6fyyx

3F − fyxF + f
(
F

∫
q dt + 4Fx

)
1
6fyyx

3G + fyxG + f
(
G

∫
q dt + 4Gx

)
)

, (33)

σ4(f ) =
(

1
24fyyyx

4F − 1
2fyyx

2F + fyx
(
F

∫
q dt + 4Fx

)
+ 8f Fy

1
24fyyyx

4G + 1
2fyyx

2G + fyx
(
G

∫
q dt + 4Gx

)
+ 8f Gy

)
, (34)

σ5(f ) =
(

σ15(f )

σ25(f )

)
, (35)
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where σ15(f ) and σ25(f ) are as follows:

σ15(f ) = − 1

120
fyyyyx

5F − fyyx
2

(
1

2
F

∫
q dt + 2Fx

)
+ fy

(
F

∫
q dt + 4Fx − 8xFy

)

+
1

6
fyyyx

3F + 4f

[
F

(
−4

∫
FxFyt

F 2
dt + 4

∫
FxtFxx

F 2
dt − 8

∫
FxGyGt

FG2
dt

+ 4
∫

GxFyFt

F 2G
dt +

∫
qG2

x

G2
dt + 4

∫
FxFyFt

F 3
dt − 4

∫
GxFyt

FG
dt

− 8
∫

FxFxtGx

F 2G
dt − 2

∫
qGy

G
dt − 2

∫
qGxFx

FG
dt + 8

∫
F 2

x FtGx

F 3G
dt

+ 8
∫

FxGyt

FG
dt − 4

∫
FxFtFxx

F 3
dt +

∫
qFxx

F
dt − 8

∫
FxGxGxt

FG2
dt

+ 8
∫

FxG
2
xGt

FG3
dt + 2

∫
qFy

F
dt

)
+ 4

FxFy

F
+ 4

FxG
2
x

G2
− 8

FxGy

G
+ 4Fxy

]
(36)

and

σ25(f ) = − 1

120
fyyyyx

5G − 1

6
fyyyx

3G − fyyx
2

(
1

2
G

∫
q dt + 2Gx

)

− fy

(
G

∫
q dt + 4Gx + 8xGy

)
+ f

[
G

(
−4

∫
FxFyt

F 2
dt + 4

∫
FxtFxx

F 2
dt

− 8
∫

FxGyGt

FG2
dt + 4

∫
GxFyFt

F 2G
dt + 4

∫
FxFyFt

F 3
dt − 4

∫
GxFyt

FG
dt

− 8
∫

FxFxtGx

F 2G
dt + 8

∫
F 2

x FtGx

F 3G
dt + 8

∫
FxGyt

FG
dt − 4

∫
FxFtFxx

F 3
dt

− 8
∫

FxGxGxt

FG2
dt + 8

∫
FxG

2
xGt

FG3
dt +

∫
qG2

x

G2
dt − 2

∫
qGy

G
dt

− 2
∫

qGxFx

FG
dt +

∫
qFxx

F
dt + 2

∫
qFy

F
dt

)
− 2

GFxFxx

F 2
+ 2

GFxFy

F 2

+ 4
FxG

2
x

FG
− 4

FxGy

F
+ 2

GFxy

F
+ 4

FyGx

F
+ 4

F 2
x Gx

F 2
+ 2

GFxxx

F

− 4Gxy − 4
FxxGx

F

]
. (37)

In calculating, we find that to get higher truncated symmetries (large n) from the recursion
equation (25) is formidable because of the difficulty in determining the integration function,
though it is feasible in principle.

From the above six truncated symmetries, it is not difficult to prove that σ0 −σ4 constitute
an infinite-dimensional closed Kac–Moody–Virasoro-type Lie symmetry algebra [14]:

[σ0(f1), σ1(f2)] = [σ0(f1), σ2(f2)] = [σ0(f1), σ3(f2)] = [σ1(f1), σ2(f2)]

= [σ0(f1), σ0(f2)] = [σ1(f1), σ1(f2)] = [σ2(f1), σ2(f2)] = 0,

[σ4(f1), σ4(f2)] = 8σ4(f1yf2 − f1f2y),

[σ3(f1), σ3(f2)] = 4σ2(f1yf2 − f1f2y),

[σ0(f1), σ4(f2)] = −8σ0(f2f1y),

[σ1(f1), σ3(f2)] = −4σ0(f1f2),
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[σ1(f1), σ4(f2)] = −4σ1(f1f2y + 2f1yf2),

[σ2(f1), σ3(f2)] = −4σ1(f1yf2),

[σ2(f1), σ4(f2)] = 8σ2(f1yf2),

[σ3(f1), σ4(f2)] = 1
4σ2(−2f1yf2 + f2yf1),

where the commutator is defined as

[A(u), B(u)] = ∂

∂ε
[A(u + εB(u)) − B(u + εA(u))]

∣∣∣∣
ε=0

.

According to the general theory [19], if A(u) and B(u) are symmetries, so is the commutator
[A(u), B(u)], from which we can obtain infinitely many generalized symmetries of the bilinear
(2 + 1)-dimensional ShG model equations (10) and (11) in the following way:

σn+1(f ) = [σ5(f1), σn(1)], f = ḟ1. (38)

As the case in calculating higher order symmetries σ1n and σ2n (large n) from the recursion
equation (25), it is also rather arduous to obtain higher order symmetries from the commutation
relation (38) for the same reason of the difficulty in determining the integration function. In
fact, the truncated symmetries deduced from the commutation relation (38) are the same as
those obtained from the recursion relation (25).

Remark. We can also do formal series expansions with arbitrary functions of x or t, namely,

σF =
∞∑

k=0

P(x)(n−k)σ1n[k], σG =
∞∑

k=0

P(x)(n−k)σ2n[k] (	)

or

σF =
∞∑

k=0

Q(t)(n−k)σ1n[k], σG =
∞∑

k=0

Q(t)(n−k)σ2n[k]. (†)

Unfortunately, careful calculations show us that the later two expansions are not proper
and need much larger amount of complex calculations though we can obtain some possible
symmetries in principle. Here are two special truncated symmetries obtained from the above
formal series symmetry expansion (†)

σ0t (t) =
(

aF

aG

)
, (39)

σ1t (t) =
(

d(Fqx + 4Ft)

d(Gqx + 4Gt)

)
, (40)

where a ≡ a(t) and d ≡ d(t) are two arbitrary functions of time t.
We have not found any truncated symmetries from the expansion (	).

3. Symmetry reductions

According to the truncated symmetries presented above namely (30)–(34), (39) and (40), a
more general Lie point symmetry of the bilinear (2 + 1)-dimensional ShG system (5) and (6)
can be written as follows:

σ =
(

σF

σG

)
, (41)
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where σF and σG are

σF =
[

1

24
lyyyx

4 +
1

6
kyyx

3 +
1

2
(jy − lyy)x

2 +

(
ly

∫
q dt − ky + qd + g

)
x

− j + f + a + k

∫
q dt

]
F + 8lFy + 4(k + lyx)Fx + 4dFt , (42)

and

σG =
[

1

24
lyyyx

4 +
1

6
kyyx

3 +
1

2
(lyy + jy)x

2 +

(
ly

∫
q dt + ky + qd + g

)
x

+ j + f + a + k

∫
q dt

]
G + 8lGy + 4(k + lyx)Gx + 4dGt . (43)

Though the detailed calculations to get the symmetry reductions related to the vanishing
σF and σG are complicated and tedious, the procedure to get the symmetry reduction solutions
is regular. So, here we just write the final results by omitting all the complicated calculations:

Case 1: l �= 0, d �= 0, k �= 0

In this case, the reduction result of equation (5) reads(
D2

ξ − Dη

)
F1 · G1 = 0 (44)

while the reduction result of equation (6) is

Dη

(
D2

ξ − Dη

)
F1 · G1 = 0, (45)

where F1 and G1 are related to the original fields F and G by

F = F1(ξ, η) ep1(x,y,t), G = G1(ξ, η) ep2(x,y,t) (46)

in which

p1(x, y, t) = 8

[
x4l2

y

48l2
+

(
xk

6l
+ 1

)
lyx

2

2l
+

kx

l
− x4lyy

l
+

x2k2

8l2
− x2j

2l
− x3ky

l

− 2
∫

a

d
dt − 2x

∫
q dt +

∫ (
j

l
− k2

2l2
− f

l

)
dy − x√

l

∫ (
g√
l

+
1

8

k3

l
5
2

)
dy

+
1

2

∫
k

l
3
2

∫ (
g√
l

+
1

8

k3

l
5
2

− 1

2

kj

l
3
2

)
dy dy

]
,

p2(x, y, t) = 8

[
x4l2

y

48l2
+

(
xk

6l
+ 1

)
lyx

2

2l
− kx

l
− x4lyy

l
− x2j

2l
+

x2k2

8l2
− x3ky

l

− 2
∫

a

d
dt − 2x

∫
q dt +

∫ (
k2

2l2
− j

l
− f

l

)
dy − x√

l

∫ (
g√
l

+
1

8

k3

l
5
2

)
dy

+
1

2

∫
k

l
3
2

∫ (
g√
l

+
1

8

k3

l
5
2

− 1

2

kj

l
3
2

)
dy dy

]
,

and

ξ = x√
l

− 1

2

∫
k

l
3
2

dy, η = −
∫

1

l
dy + 2

∫
1

d
dt. (47)
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Case 2: l = 0, d �= 0, k �= 0

In this special situation, the general symmetry expressions (42) and (43) are changed to

σ ′
F =

[
1

6
kyyx

3 +
1

2
jyx

2 + (dq + g − ky)x + a + k

∫
q dt − j + f

]
F + 4kFx + 4dFt (48)

and

σ ′
G =

[
1

6
kyyx

3 +
1

2
jyx

2 + (dq + g + ky)x + a + k

∫
q dt + j + f

]
G + 4kGx + dGt , (49)

while the corresponding symmetry reduction results are(
D2

η + Dξ

)
F1 · G1 = 0 (50)

and[−2kDη

(
Dξ + D2

η

)
+ (kξξ η

2 + 2g − 2kξ + 2jξη)Dη + (kξη + j)D2
η

]
F1 · G1

+
[
(kξη + j)Dξ − (

fξ + gξη + 1
6kξξξ η

3 + 1
2jξξη

2
)]

F1 · G1 = 0, (51)

and the original fields F and G are given by

F = F1(ξ, η) ep3(x,y,t), G = G1(ξ, η) ep4(x,y,t)

in which

p3(x, y, t) = −4
∫

a

d
dt − 1

4
x

∫
q dt +

8

3
kyyk3

(∫
4

d
dt

)4

− 8

3
(jy + kyyx)

(∫
4

d
dt

)3

+ k(2jyx + kyyx
2 + 2g − 2ky)

(∫
4

d
dt

)2

+ 4

(
−1

6
kyyx

3 − gx + kyx − 1

2
jyx

2 − f + j

) ∫
1

d
dt,

p4(x, y, t) = −4
∫

a

d
dt − 1

4
x

∫
q dt +

8

3
kyyk3

(∫
4

d
dt

)4

− 8

3
(jy + kyyx)

(∫
4

d
dt

)3

+ k(2jyx + kyyx
2 + 2g + 2ky)

(∫
4

d
dt

)2

+ 4

(
−1

6
kyyx

3 − gx − kyx

− 1

2
jyx

2 − f − j

) ∫
1

d
dt,

while

ξ = y, η = x − k

∫
1

d
dt.

Remark. It is quite interesting that if we take a special selection

k = constant, f = constant, g = j = 0,

then the reduced bilinear equation system (50) and (51) is just the known one for the classical
Boussinesq equation [20]. In other words the equation system (1) and (2) is not only a
(2 + 1)-dimensional sinh-Gordon extension but also equivalent to a novel (2 + 1)-dimensional
classical Boussinesq extension.
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Case 3: l = 0, d = 0, k �= 0

For the third case, σF and σG are

σF =
(

1

6
kyyx

3 +
1

2
jyx

2 + (g − ky)x + f + a + k

∫
q dt − j

)
F + 4kFx, (52)

σG =
(

1

6
kyyx

3 +
1

2
jyx

2 + (ky + g)x + f + a + k

∫
q dt + j

)
F + 4kGx (53)

and its corresponding symmetry reduction has the form

[4k2Dy + (j − 2gk)]F1 · G1 = 0 (54)

and

[(2gk − j 2)Dt + 4k2DtDy − 2atj ]F1 · G1 = 0, (55)

and F1 and G1 are related to F and G by

F = F1(y, t) ep5(x,y,t), G = G1(y, t) ep6(x,y,t),

where

p5(x, y, t) = −x4kyy

96k
− x3jy

24k
−

(
ky

8k
+

g

8k

)
x2 −

(
f

4k
+

a(t)

4k
+

1

4

∫
q dt +

j

4k

)
x,

p6(x, y, t) = −x4kyy

96k
− x3jy

24k
+

(
ky

8k
− g

8k

)
x2 −

(
f

4k
+

a(t)

4k
+

1

4

∫
q dt − j

4k

)
x.

4. Summary

All in all, we have found the generalized symmetries of the bilinear ShG equations (10) and
(11) namely equation (41) in combination with equations (42) and (43). The bilinear ShG
system (and then the usual ShG system (3) and (4) or equivalently (1) and (2)) possesses
infinitely many generalized symmetries. That means we have proved that the first one of
the NKP hierarchy is a new (2 + 1)-dimensional integrable extension of the ShG equation
under the symmetry meaning while its Lax integrability and its integrability under possessing
N soliton meaning have been known in the literature [17, 18]. The Lie point symmetries
constitute a Kac–Moody–Virasoro-type Lie symmetry algebra and the Lie point symmetries
are used to find the corresponding symmetry reductions. As a by product, from the special
reduction (50) and (51), we know that the bilinear form (10) and (11) of the first member of
the negative Kadomtsev–Petviashvili hierarchy is not only a (2 + 1)-dimensional sinh-Gordon
extension but also a novel (2 + 1)-dimensional classical Boussinesq extension.

The study of the integrable systems of the negative hierarchies is very difficult and
there is little progress in this direction especially in high dimensions. The study on the
NKP and the ShG system (1) and (2) in [17] and this paper are only two known ones.
There are many important but difficult problems on high dimensional integrable negative
hierarchies that have not been solved yet. In (1 + 1)-dimensional case, the integrable negative
hierarchies are linked to many interesting and important problems for the usual positive
integrable hierarchies. For instance, the negative hierarchies connect the negative symmetries,
the inverse recursion operators, Lax pairs, gauge transformations, Möbius transformations,
nonlinearizations, consistent source and pfaffianizations. However, the possible similar
problems in high dimensions are almost blank. Thus, more about the high dimensional ShG
system and integrable models related to other high dimensional integrable negative hierarchies
are worthy of studying further.
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